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Abstract. We present a numerical method to calculate the spin fluctuation dynamics on a stepped surface.
The model discussed here consists of an extended antiferromagnetic surface step at the surface boundary
of an insulating antiferromagnetic substrate. The stepped surface is formed by two straight steps dropped
randomly and the spins moments of the steps and the substrate are considered as local with no electronic
effects. The full magnetic problem arising from the absence of translational symmetry due to the presence of
a magnetic surface and steps is considered and studied. The calculations concern in particular the energies
of localized spin-wave modes near the surface steps and employ the matching procedure in the random-
phase approximation and mean field approximation. Only the nearest-neighbor exchange interactions are
considered between the spins in the model. The analytical formalism presented here is adapted from an
earlier work on the vibrational spectra of two isolated steps, a structure that can be considered as a low
dimensional system and solved for the three dimensional evanescent crystal spin field in the bulk and the
surface domains around the steps. This spin field arises from the breakdown of the magnetic translation
symmetry of the system. The results are used to calculate the spin mode energies associated with the steps
and surface terraces. We show the presence of localized acoustic and optical spin wave modes propagating
along the surface and the steps as well as the interface surface-steps, their fields are also described as
evanescent in the plane normal to the surface step layers and depend on the nature of the exchange
interaction near the steps.

PACS. 75.70.Ak Magnetic properties of monolayers and thin films – 75.50.Ee Antiferromagnetics –
75.30.Ds Spin waves – 76.70.Hb Optically detected magnetic resonance (ODMR)

1 Introduction

The study of film growth has been increasingly character-
ized by the application of surface science methods to un-
derstand growth at the atomic level. Work in this field has
been motivated by the ever more stringent requirements
on the quality of thin films needed for developing advanced
microelectronic, optical, and magnetic devices, as well
as the thrust toward nanometer-scale structures. As de-
vice miniaturization reaches submicrometer and nanome-
ter length regimes, atomic level control of the fabrication
processes for both novel materials and new devices have
become of great importance. The presence of nanostruc-
tures such as random steps, kinks and other defects on
crystal surfaces is important to their equilibrium topogra-
phy as well as to a number of other surface properties. As
for the role of steps, it is known, for instance, that their
presence can modify the growth modes of surfaces. Ques-
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tions concerning the thermodynamic stability of surfaces
and the modes of their kinetic growth are also becoming
important, which implies a need for a better understand-
ing of the role of surface nanostructures and their partic-
ular properties.

Most earlier studies on surface magnetism are based
on the assumption that the magnetic surface is morpho-
logically perfectly smooth (ideal bulk termination). Real
films, however, have a rough surface. The atomic heights of
surface atoms can differ by a few atomic spacings because
of the formation of a variety of surface defects including
diffusional disorder, surface reconstruction, vacancies and
step changes in the height of the film [1,2]. Such surface
roughness is expected to affect magnetism. Therefore, es-
tablishing the relationship of surface/interface magnetic
properties to surface/interface roughness is not only of
fundamental interest but is also essential for the develop-
ment of new magnetic devices using magnetic multilayers.
Let us note that these imperfections may lead to a num-
ber of effects including changes in the thermal properties
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of the film and short lifetimes for spin-waves as evidenced
by large linewidths in Brillouin scattering experiments.

During the last decade, an increasing interest from the
theoretical and experimental points of view has been de-
voted to study the dynamics of disordered surfaces [3–6].
The study of magnons or spin-waves in ultrathin films
has proved to be very useful, in particular, for determin-
ing the magnetic anisotropy constant [7,8] using Brillouin
light scattering [9,10], that provides a tool to probe these
magnetic excitations in ultrathin layers. It is normally ad-
mitted now, however, that experiments are performed on
systems which lack perfectly flat atomic layers. Previous
studies have shown that there is a strong reflection of the
spin-waves at monoatomic steps and that spin-wave modes
localized at the step edge occur at a single step. Breaking
of the translational symmetry in one direction may re-
sult in new localized modes as compared to the smooth
film case. The effects of localized imperfections on the
spin-wave propagation in thin ferromagnetic films have
been examined, where these imperfections are assumed to
be materially confined to a few lattice sites causing local
changes in anisotropy and exchange fields [11]. Another
study has calculated, in the framework of a quasi-one-
dimensional model, the reflection and transmission coef-
ficients for a spin-wave which suffers diffraction at a step
like atomic discontinuity [12]. Recently, it was demon-
strated that there are spin wave localized modes which oc-
cur at a single step in the ferromagnetic films models [13]
and at the monolayer Fe films on stepped W surfaces [14].
Breaking of the translational symmetry in one direction
may result in new localized modes as compared to the
smooth film case. The case of a antiferromagnet isolated
step has been recently examined [15]. The case of two iso-
lated steps, to our knowledge, has not been treated yet. In
this paper we study the full problem arising from the ab-
sence of translational symmetry in two directions due to
surface steps. We present a precursor model system with
the intention of studying the surface dynamics due to ex-
tended magnetic surface steps at the surface boundary of
an insulating magnetic substrate. Such studies are impor-
tant because surfaces are never perfectly flat in reality and
atomic steps, for example, on vicinal surfaces, are known
to occur [16].

The study of magnetic excitation phenomena at disor-
dered surfaces by completely ab-initio techniques is still a
difficult exercise and is nanostructure specific. Owing to
the complexity of the phenomena, even though some em-
pirical many-body approximations are available [17,18],
and can lead to refinements in the numerical values at-
tributed to exchange interactions values in the neighbor-
hood of surface defects, and to the relaxed positions of
the magnetic atoms in vicinal surfaces. The theoretical ap-
proach presented here in contrast is an analytical approach
which is independent of the geometry of the nanostructure
in the surface. This makes it easy to extend to a variety
of real problems. It can also give in a direct manner the
real space Green’s functions for the spin fluctuation dy-
namics of an isolated nanostructure with the help of finite
matrices.

The paper is organized as follows: the explicit theoret-
ical model for a stepped surface is presented in Section 2.
In Section 3, the main stages of calculations are given
in detail: the spin fluctuation dynamics are presented for
the bulk and terrace domains to determine unique solu-
tions for the evanescent modes induced by the presence of
a surface step. This permits the rigorous construction of
the evanescent spin field surrounding the steps. The ana-
lytic approach has the advantage of presenting this field
as a characteristic of a thin film lattice but remains inde-
pendent of the size and the configuration of the surface
steps, underlying the general character of the calculation.
Section 4 is devoted to describing the numerical procedure
based on the matching procedure with an application to
the spin fluctuation dynamics of the steps domain. Salient
numerical results and discussion are presented in Section 5
whereas the conclusions are summarized in Section 6.

2 The stepped surface model

Let us consider the schematic configuration of the semi-
infinite antiferromagnetic surface and steps in the case of
simple cubic lattice as illustrated in Figures 1a and 1b.
The stepped surface is formed by two straight steps
dropped randomly and the spin moments of the steps and
the insulating substrate are considered as local with no
electronic effects. The spin order is considered in the di-
rection normal to the surface boundary (z-direction), with
no loss of generality, and the spin interact via magnetic
exchange. The site position perpendicular to the step is
indexed by n, whereas the layer number is labeled by m.
The two-dimensional reference cross section of the mag-
netic steps is taken geometrically at the plane indexed by
the integer s = 0. The geometry of the model showing the
different exchange parameters is illustrated in Figure 1b.
Only the nearest neighbor exchange interactions are con-
sidered. In the model for that purpose, there is transla-
tional invariance parallel to the steps in the one dimen-
sional (1D) direction defined as the y-axis. To each lattice
site is attributed a spin vector variable Sn,s,m(t) where
the integer indices (n, s,m) count, respectively, the po-
sition site along the x, y, z directions. The two magnetic
steps on the surface are illustrated by the semi-infinite
planes of ordered spins located at m = −1 and m = 0,
respectively, adjacent to an infinite plane of ordered spins
labeled by m = 2. Each bulk spin site for which m ≥ 2
has the position vector �r = n�a + s�b + m�c. The matching
technique and its implementation requires the crystal to
be divided into three main regions all having the same
two-dimensional (2D) periodicity along the direction nor-
mal to the surface and step. (i) a bulk spin site region
(m ≥ 2) relatively removed from the steps having three-
dimensional (3D) periodicity where the magnon dispersion
curves are first worked out. Here, the exchange constants
are taken equal to J . (ii) The surface terrace sites (m = 1)
consisting of an arbitrary reconstructed or relaxed layer
inside which translational symmetry is lost along that di-
rection not contained in the surface plane. (iii) the steps
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Fig. 1. (a) Schematic view of an antiferromagnetic stepped
surface. The integers n, s, m count the spin site along the x-,
y- and z-directions, respectively. (b) Two-dimensional cross-
section of the insulating antiferromagnet model, showing the
different exchange parameters. The z-axis is normal to the sur-
face substrate, whereas the x-axis is perpendicular to the steps.

region (−1 ≤ m < 1) corresponding to spin sites belong-
ing strictly to the step planes inside which translational
invariance symmetry remains.

3 Bulk spin fluctuations dynamics outside
the steps region

The formalism developed here and based on the match-
ing technique is one of a number of theoretical techniques
used to study surface spin-waves and resonances. It ap-
plies to ordered crystal surfaces by stipulating that the
dynamics of localized surface states should conform in
their decay to the evanescence dynamics of bulk modes
along the direction normal and away from the surface.
In the present study it is advantageous to generalize the
matching method to two spatial directions, normal and
parallel to the steps. To analyze the spin fluctuation dy-
namics on the surface and at the steps, and to calculate

the frequencies of the localized modes occurring at the
boundary, a formalism consisting of essentially three main
stages is developed. The first consists in determining the
Bloch equations of spin motions, and the set of propagat-
ing magnetic modes, that describe in turn the magnetic
propagating bulk spin fluctuation field on the 2D bulk
square lattice parallel to the surface step structure. This
field depends only on the nature of the magnetic exchange
interactions proposed between its sites. This provides a
straightforward derivation of the equations of motion for
any overlayer commensurate with 2D periodicity. The sec-
ond defines, by introducing the 1D Fourier transform, the
equation of spin fluctuation dynamics in order to deduce
the precessional field on the steps as well as for the two
types of spin sites in the surface that are representative of
the topmost layer on the left and the right terraces. The
third stage aims to match the magnetic dynamics proper-
ties of the surface and steps to the evanescent bulk spin
fluctuation field. Also, the evanescent magnetic modes in-
duced in the bulk and the surface terrace region with the
existence of the steps domain which is considered as an
isolated nanometer-scale structure are calculated. The for-
malism developed in this paper allows a study of the bulk
spin fluctuations field as well as the localized modes of
spin waves on the surface step region depending on the
nature of the bulk-surface and surface-step coupling ex-
change parameters.

The problem is formulated in terms of a Heisenberg
model with two equivalent sub-lattices A and B. The mi-
croscopic Hamiltonian used is a sum of an exchange, ex-
ternal and anisotropy magnetic fields terms:

H = −
∑

〈n,s,m〉

∑

〈n′,s′,m′〉
JABSn,s,mSn′,s′,m′

+ µAH
A
e

∑

〈n,s,m〉
SZ

n,s,m + µBH
B
e

∑

〈n′,s′,m′〉
SZ

n′,s′,m′ . (1)

Primed sums indicate simultaneously n = n′, s = s′ and
m = m′ cases are excluded, otherwise all sums range over
all the lattice sites. µA(B) are the gyromagnetic ratios for
ions on A or B-sites, respectively. Sn,s,m and Sn′,s′,m′

are the magnitude of the corresponding local-spin op-
erators located at the lattice sites [σ] = (n, s,m) and
[κ] = (n′, s′,m′), respectively. The subscripts (n, s,m) and
(n′, s′,m′) run over the sub-lattice A-sites and B-sites, re-
spectively. JAB is taken as positive in equation (1) to de-
pict an antiferromagnetic alignment of the spin on one
sub-lattice with respect to the other. Here, we consider
only nearest neighbors inter-sublattices exchange interac-
tions, allowing JAB to be different from the bulk value
J (m ≥ 2) and take the values J

‖
S1, J

‖
S2, J

‖
S , when the

spin sites are located in the upper, lower step and sur-
face terrace, respectively. An adjacent exchange interac-
tion in the stepped surface domain is denoted by J⊥

c .
HA,B

e = Ho + Ha
A,B characterize the effective fields ex-

perienced by the magnetic ions on sub-lattices A and B,
and are due to the externally applied field Ho and to the
effective single-ion anisotropy fields Ha

A,B. They are taken
to lie along the easy direction of magnetization which itself
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is taken to be the direction of the z-axis, perpendicular to
the substrate surface.

In treating the bulk spin fluctuation field properties
outside the steps and surface regions removed from the
step, it is advantageous to use the detailed form of the
dispersion law and the normal modes of the bulk spin
fluctuation field, so one needs to introduce the 2D periodic
character of surface steps layers. This has the advantage of
using the translational symmetry and transforms the site
representation α+

n,s,m(β+
n,s,m) to the spin-wave represen-

tation α+
�k

(β+
�k

), where �k is the corresponding wave vector,
α+

n,s,m(β+
n,s,m) are the local spin deviation at site (n, s,m).

For the bulk region, only translations parallel to the sur-
face terrace of the substrate are symmetry operations.
As a result of this symmetry, the in-plane wave-vector
k‖(kx, ky) is still a good quantum number. k‖ spans the
two-dimensional Brillouin zone defined by the combined
substrate symmetry parallel to the surface terrace. Ow-
ing to the reduced and broken symmetries of the stepped
surface problem, it is convenient to work in a mixed rep-
resentation which is localized on planes parallel to the
surface terrace. We define the local spin-deviation cre-
ation operators α+

k‖ and β+
k‖ on given sites (n, s,m) and

(n′, s′,m′), respectively, with a given transverse crystal
momentum k‖, by:

α+
n,s,m(t, k‖) =

∑

〈n,s,m〉
S+

n,s,m(t)e−ik‖rn,s,m

and

S+
n,s,m(t) =

∑

〈k‖〉
α+

k‖(t, k‖)e−ik‖rn,s,m , (2a)

β+
n,s,m(t, k‖) =

∑

〈n′,s′,m′〉
S+

n′,s′,m′(t)e−ik‖rn′,s′,m′

and

S+
n′,s′,m′(t) =

∑

〈k‖〉
β+

k‖(t, k‖)e
−ik‖rn′,s′,m′ . (2b)

Inserting equations (2) in equation (1) and putting
E = (�w − gµBH0)/JS and JAB = J , the linearized
equations of motion of each layer in sub-lattices A and B
relating to the spin fluctuation field for any site σ in the
bulk domain removed from the step are found by com-
muting the sub-lattice spin lowering operators with the
Hamiltonian in the form idS±

n,s,m/dt = [S±
n,s,m, H]. This

leads to:

Eα+
n,s,m(r)(k‖, w)

= zσκ

∑

〈σ,κ〉
J

{〈
SZ

A

〉 1
zσκ

γ
σκ(‖)
k β+

n,s,m(r+∆)

− 〈
SZ

B

〉
γ

σκ(⊥)
k α+

n,s,m(r)

}
+ µAH

a
Aα

+
n,s,m(r), (3a)

Eβ+
n,s,m(r+∆)(k‖, w)

= zσκ

∑

〈σ,κ〉
J

{〈
SZ

B

〉 1
zσκ

γ
σκ(‖)
k α+

n,s,m(r)

− 〈
SZ

A

〉
γ

σκ(⊥)
k β+

n′,s′,m′(r+∆)

}
+ µBH

a
Bβ

+
n,s,m(r+∆),

(3b)

In obtaining equations (3), we replaced SZ
n,s,m and

SZ
n′,s′,m′ by its thermal expectation value, given by 〈SZ

A〉
and 〈SZ

B〉, respectively, considering that at relatively low
temperatures, in comparison with the order-disorder tran-
sition temperature, the z-component of the spin on ei-
ther A or B may be approximated by 〈SZ

n,s,m〉 = SA and
〈SZ

n′,s′,m′〉 = SB. Owing to the antiferromagnetic charac-
ter of the model used here, we consider SA = −SB. The
summation (σ, κ) is over nearest neighbors only, and zσκ

denotes the number of nearest neighbors sitting on [κ] sites
to an ion on a [σ] site. We have used σ, κ = A, B through-
out. Two types of contributions occur for the first part
in the second term of equation (3a). For the first type,
the nearest neighbors of the spin at r are in adjacent lay-
ers. In the second, the nearest neighbors are in the same
layer. Whereas for equation (3b), the opposite case is as-
sumed. We consider that rn,s,m − rn±1,s±1,m±1 = ∆, for
any variation of integers n, s and m. The functions γσκ(‖)

k

and γ
σκ(⊥)
k are relative to the geometry of the magnetic

model and result from the exponential factors when z
(‖)
σκ

and z(⊥)
σκ characterize the number of nearest neighbors in

the same and in the adjacent layer, respectively. It may
be expressed as:

γ
σκ(‖)
k =

[
z(‖)

σκ

]−1 ∑

〈n,s,m〉
exp ik‖(rn,s,m − rn±1,s±1,m)

= 1/2 [cos(kxa) + cos(kya)] ,

γ
σκ(⊥)
k =

[
z(⊥)

σκ

]−1 ∑

〈n,s,m〉
exp ik‖(rn,s,m − rn,s,m±1) = 1.

(4)

To give a complete description of the spin fluctuations
field, the equations of motion for each domain need to
be rewritten for any site (n, s,m) in the bulk domain re-
moved from the step as well as on the surface terrace.
Using equations (3a) and (3b) and owing to the trans-
lational invariance in two dimensions for the bulk region
(m ≥ 2), the Bloch conditions may be applied in the x
and y-directions, resulting in the equations of the bulk
spin fluctuation dynamics which for each sub-lattice takes
the recurrent form:

Eα+
n,s,m =

[
γ

σκ(‖)
k

×
{
β+

n+1,s,m + β+
n−1,s,m + β+

n,s−1,m + β+
n,s+1,m

}
− α+

n,s,m

]

+
[
γ

σκ(⊥)
k

{
β+

n,s,m+1 + β+
n,s,m−1

} − α+
n,s,m

]
+µAH

a
Aα

+
n,s,m,
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Eβ+
n,s,m =

[
γ

σκ(‖)
k

×
{
α+

n+1,s,m + α+
n−1,s,m + α+

n,s−1,m + α+
n,s+1,m

}
−β+

n,s,m

]

+
[
γ

σκ(⊥)
k

{
α+

n,s,m+1 + α+
n,s,m−1

}
− β+

n,s,m

]
+µBH

a
Bβ

+
n,s,m.

(5)

The spin fluctuation motion on sites (n, s,m) and
(n′, s′,m′) outside the surface steps boundaries, may
hence be expressed as:

[
E2I −D

(
γ

σκ(‖)
k , γ

σκ(⊥)
k , J, SA, SB

)] ∣∣∣∣
α+

n,s,m

β+
n,s,m

〉
= 0.

(6)
To describe the evanescent field of the bulk spin fluc-

tuation variables on the square lattice parallel to the sur-
face step region, we introduce the spatial phase factors
which describe the evanescent modes. This is done consid-
ering the travelling spin-wave from one site to its nearest
neighbors in either sense along both the broken symme-
try directions (z- and x-axis) of the cubic lattice and by
introducing the static and dynamic parts of the variable
α+

n,s,m(t) and β+
n,s,m(t) given by equations (2) as follows:

α+
n,s,m±1(t) = α+

n,s,m±1(0) + α+
n,s,m±1ψn,s,m±1e

−iwt

and β+
n,s,m±1(t) = β+

′n,s,m±1(0)+β+
n,s,m±1ψn,s,m±1e

−iwt,

(7a)

α+
n±1,s,m(t) = α+

n±1,s,m(0) + α+
n±1,s,mψn±1,s,me

−iwt

and β+
n±1,s,m(t) = β+

n±1,s,m(0) + β+
n±1,s,mψn±1,s,me

−iwt,

(7b)

where α+
n,s,m±1(0) (α+

n±1,s,m(0)) and β+
n,s,m±1(0)

(β+
n±1,s,m(0)) are the time independent part in the

direction of the magnetic order along the z(x)-axis,
ψn,s,m±1 (ψn±1,s,m) characterizes the spatial phase
factors of a wave for a propagating mode along the
chain corresponding to a spin site and its nearest neigh-
bors in z(x)-direction, respectively. The last terms in
equations (7) depict the spin fluctuation variable from
the direction of magnetic order, giving rise to spin
excitations [19–21]. Since the system has the translational
invariance parallel to the surface terrace, we focus our
attention on determining the unique solution for the
evanescent magnetic modes propagating in the direction
normal to the 2D lattice extended in the x- and y-axis.
Consequently, the z-direction is chosen to characterize
the exponentially decay of amplitude with increasing
penetration into the crystal. Inserting equations (7a)
and (7b) in equation (6), we are able to give the bulk
secular equation as:

η=5∑

η=1

ξηψ
(η−1)
n,s,±m = 0 (8)

where the coefficient ξη are described by the following ex-
pressions with the properties:

ξ1 = ξ5 = J2SASB,

ξ2 = ξ4 = 4J2SASB(cos kxa+ cos kya),

ξ3 = − [
(E + JSBzσκ + µAH

A
e )(E + JSAzσκ + µBH

B
e )

]

+ 2J2SASB(1 + 2(cos kxa+ cos kya)2).

The phase factor doublet (ψn,s,±m(ζ), ψ−1
n,s,±m(ζ)) can

be shown to verify symmetrically the polynomial equa-
tion (8), owing to the Hermitian nature of the bulk dynam-
ics or time reversal symmetry in such a bulk crystalline
lattice [22,23]. ζ depicts both the evanescent (ne) and bulk
(nb) modes. The frequencies of the bulk spin fluctuations
dynamics field are obtained using equation (10), when
ψ satisfies the propagating condition |ψn,s,±m(ζ)| = 1.
For arbitrary values of ψn,s,±m(ζ), however, equation (8)
does not provide on its own the required unique solution
for the surface steps system. To obtain this one also needs
to analyze the spin dynamics on the surface terrace and
step regions. To do this, we require knowledge of the com-
plete set of evanescent modes in the bulk region. These
latter modes and their properties will be discussed in the
next section. These can be characterized by complex phase
factors which describe the decrease of precessional ampli-
tude field with the distance from the surface steps domain.
The latter region is specific because it constitutes strictly
a surface problem with reconstruction and/or relaxed lay-
ers. Consequently, we need to describe the spin fluctuation
dynamics for the topmost layer as step terrace (n < 0, s, 0)
and for two types of sites for spins in the surface that are
somewhat removed from the step, and that are represen-
tative of the left (n < 0, s, 1) and the right (n > 0, s, 1)
terraces, respectively.

4 Spin modes localized on the stepped
surface region

In order to describe the full spin fluctuations dynamics
problem in the presence of surface steps, we have not
only to know the propagating modes described by their
above phase factors, but also consider the evanescent solu-
tions of the system. Explicitly, for a given energy value E,
we need all the solutions ψn,s,m(ζ), including those with
|ψn,s,m(ζ)| �= 1.

As regards the spin surface dynamics, it is necessary to
specify in the surface boundary substrate, five elementary
domains due to the broken symmetry along the x- and z-
directions. The primary domain consists of the spin sites
belonging strictly in the first step (m = −1). The second
corresponds to two domains for spin sites also relatively re-
moved from the step belonging in the second step (m = 0).
The third characterizes surface terrace sites (m = 1) which
refers to the two regions for spin sites located to the left of
the surface plane (n < 0, s, m = 1) and right of the second
step (n > 0, s, m = 1). This representation allows us to
determine the spin fluctuation field for both surface and
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steps layers. Furthermore, as has been pointed out previ-
ously, Bloch’s theorem may be used in the y-direction due
to the existence of translational symmetry. Furthermore,
we need for simplicity, to introduce the following param-
eters: ε‖1 = J

‖
S1/J , ε‖2 = J

‖
S2/J , ε‖s = J

‖
s /J , ε⊥1‖ = J

‖
s1/J

⊥
c ,

ε⊥2‖ = J
‖
s2/J

⊥
c , ε⊥S‖ = J

‖
S/J

⊥
c and ε⊥c = J⊥

c /J . This leads
to give the equations of motion for spin sites located to
the left (n < 0, s, m = 1) and right of the surface sub-
strate (n > 0, s, m = 1). These are given, respectively, by
the following expressions:

Eα
(A)
n,s,1 = ε

‖
S

[
(1 − cos kya)

× {
β+

n+1,s,1 + β+
n−1,s,1 + β+

n,s−1,1 + β+
n,s+1,1

} − α+
n,s,1

]

+
[{
ε⊥S‖β

+
n,s,0 + ε

‖
Sβ

+
n,s,2

}
− α+

n,s,1

]
+ µAH

a
Aα

+
n,s,1,

Eβ+
n,s,1 = ε

‖
S

[
((1 − cos kya)

× {
α+

n+1,s,1 + α+
n−1,s,1 + α+

n,s−1,1 + α+
n,s+1,1

} − β+
n,s,1

]

+
[{
ε⊥S‖α

+
n,s,0 + ε

‖
Sα

+
n,s,2

}
− β+

n,s,1

]
+ µBH

a
Bβ

+
n,s,1.

(9a)

Eα+
n,s,1 = ε

‖
S

[
(1 − cos kya)

× {
β+

n+1,s,1 + β+
n−1,s,1 + β+

n,s−1,1 + β+
n,s+1,1

} − α+
n,s,1

]

+
[
ε
‖
Sβ

+
n,s,2 − α+

n,s,1

]
+ µAH

a
Aα

+
n,s,1,

Eβ+
n,s,1 = ε

‖
S

[
(1 − cos kya)

× {
α+

n+1,s,1 + α+
n−1,s,1 + α+

n,s−1,1 + α+
n,s+1,1

} − β+
n,s,1

]

+
[
ε
‖
Sα

+
n,s,2 − β+

n,s,1

]
+ µBH

a
Bβ

+
n,s,m. (9b)

For the first step layer (−∞ < n ≤ −1, s, m = −1), this
yields:

Eα+
n,s,−1 = ε

‖
1

[
(1 − cos kya)

× {
β+

n+1,s,−1+β
+
n−1,s,−1+β

+
n,s−1,−1+β

+
n,s+1,−1

}−α+
n,s,−1

]

+
[
ε⊥1‖β

+
n,s,0 − α+

n,s,−1

]
+ µAH

a
Aα

+
n,s,−1,

Eβ+
n,s,−1 = ε

‖
1

[
(1 − cos kya)

× {
α+

n+1,s,−1+α+
n−1,s,−1+α

+
n,s−1,−1+α

+
n,s+1,−1

}−β+
n,s,−1

]

+
[
ε⊥1‖α

+
n,s,0 − β+

n,s,−1

]
+ µBH

a
Bβ

+
n,s,−1. (10)

For the second step layer (m = 0), we may write the equa-
tions of spin fluctuations variables corresponding to the

quarter-infinite half spaces to the left (−∞ < n < −1)
and to the right (−1 ≤ n ≤ 0) of the second semi-infinite
step. These are expressed in the following forms:

For site spins belonging on the domain (−∞ < n <
−1, s, m = 0):

Eα+
n,s,0 = ε

‖
2

[
(1 − cos kya)

× {
β+

n+1,s,0 + β+
n−1,s,0 + β+

n,s−1,0 + β+
n,s+1,0

} − α+
n,s,0

]

+
[
ε⊥2‖

{
β+

n,s,−1 + β+
n,s,1

} − α+
n,s,0

]
+ µAH

a
Aα

+
n,s,0,

Eβ+
n,s,0 = ε

‖
2

[
(1 − cos kya)

× {
α+

n+1,s,0 + α+
n−1,s,0 + α+

n,s−1,0 + α+
n,s+1,0

} − β+
n,s,0

]

+
[
ε⊥2‖

{
α+

n,s,−1 + α+
n,s,1

} − β+
n,s,0

]
+ µBH

a
Bβ

+
n,s,0. (11)

For spin sites belonging strictly on the second terrace step
(−1 ≤ n ≤ 0, s, m = 0), we may write:

Eα+
n,s,0 = ε

‖
2

[
(1 − cos kya)

× {
β+

n−1,s,0 + β+
n,s−1,0 + β+

n,s+1,0

} − α+
n,s,0

]

+
[
ε⊥2‖β

+
n,s,1 − α+

n,s,0

]
+ µAH

a
Aα

+
n,s,0,

Eβ+
n,s,0 = ε

‖
2

[
(1 − cos kya)

× {
α+

n−1,s,0 + α+
n,s−1,0 + α+

n,s+1,0

} − β+
n,s,0

]

+
[
ε⊥2‖α

+
n,s,1 − β+

n,s,0

]
+ µBH

a
Bβ

+
n,s,0. (12)

The generalized spatial phase factors along the y-
direction may be written according to equation (7). Since
the steps are considered infinite along the y-axis, we use
Bloch’s theorem and write the operators α+

n,s±1,m and
β+

n′,s′±1,m′ in their wave-like representation, so that:

α+
n,s±1,m(t) = α+

n,s±1,m(0) + α+
n,s±1,me

±ikyae−iwt

and

β+
n,s±1,m(t) = β+

n,s±1,m(0) + β+
n,s±1,me

±ikyae−iwt. (13)

The quantity exp(±ikya) was chosen to depict the phase
factor for the propagating mode along the y-axis by con-
sidering the travelling spin-wave from one site to its near-
est neighbors in either sense.

In general, the precessional spin fluctuation field of
quantum spins in the surface step domain includes both
evanescent and propagating spin fluctuation dynamics.
Also, it may be described by a general linear development
of a complete set of the ne and nb modes. In order to solve
for the magnetic excitations localized on the surface and
steps, we need to match the propagating bulk modes to
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the corresponding evanescent field near the surface and
step regions using the matching procedure [15,24,25]. For
spin sites somewhat removed from the first step yet on
the second, to the right and left of the step, the fluctu-
ation spin variables may be represented in terms of the
evanescent field as follows:

for spins located on the domain (−∞ < n ≤ 1, s, m =
0) we may put:

α+
−∞<n≤1,s,m=0 =

ne+nb∑

ζ=1

ψζ(−∞<n≤1,s,m=0)(E, k, ζ),

β+
−∞<n≤1,s,m=0 =

ne+nb∑

ζ=1

ψζ(−∞<n≤1,s,m=0)(E, k, ζ).

(14)

For spin sites below the step labeled by the indices (−1 ≤
n ≤ 0, s, m = 0), the equation (14) may be written as

α+
−1≤n≤0,s,m=0 =

ne+nb∑

ζ=1

ψζ(−1≤n≤0,s,0)(E, k, ζ),

β+
−1≤n≤0,s,m=0 =

ne+nb∑

ζ=1

ψζ(−1≤n≤0,s,0)(E, k, ζ). (15)

where as for embedded sites surrounding the first step, the
equations describing the matching of bulk spin fluctuation
variables with the localized modes on steps may be written
in the following forms:

α+
n,s,±m =

ne+nb∑

ζ=1

Rrζ(n<0,s,m)C
(
A,ψζ(n,s,m>1)

)

× ψm−1
ζ(n,s,m>2)(E, k, ζ), (16a)

β+
n,s,±m =

ne+nb∑

ζ=1

Rlζ(n>0,s,m)C
(
B,ψζ(n,s,m>1)

)

× ψm−1
ζ(n,s,m>1)(E, k, ζ). (16b)

This mathematical framework of evanescent magnetic
modes in a two-dimensional square lattice in the neigh-
borhood of extended inhomogeneities such as a surface
step layer allows us to uncouple the equation of motion
of the steps and surface terrace at the boundary from
the bulk domain. The weighting coefficients Rrζ(n<0,s,m)

and Rlζ(n>0,s,m) characterize the contributions of different
modes in the bulk precessional amplitude field for project-
ing the evanescent field in respectively the quarter-infinite
half spaces to the left and to the right of the two magnetic
steps. Also, the equations (14), (15) and (16) characterize
the matching relations for describing the surface and step
spin wave branches from the bulk spin precessional field
equations. C(A(B), ψζ(n,s,m≥2)) are the normalized corre-
sponding polarization vectors of spin-waves which repre-
sent the cofactor of the dynamical matrix given in equa-
tion (6).

The evanescent spin fluctuation amplitude in the z-
direction away from the surface step region, is described

by the phase factor doublet (ψζ(n,s,m), ψ
−1
ζ(n,s,m)), going

from one site to its nearest neighbors or vice-versa along
the direction normal to the step terrace. The subscript ξ
is carried out over all 3D travelling (|ψζ(n,s,m)| = 1 and
|ψ−1

ζ(n,s,m)| = 1) and exponential-like (|ψζ(n,s,m)| < 1 and
|ψ−1

ζ(n,s,m)| > 1) Bloch waves. Explicitly, we consider that
an evanescent magnetic excitation from the surface step
layer is characterized by a phase factor satisfying the re-
quirement that |ψζ(n,s,m)| < 1 given by the evanescent
solutions of the equations of motion, whereas the propa-
gating mode is described when |ψζ(n,s,m)| = 1. In practice
only the evanescent and propagating modes are retained
as physically applicable.

By considering the above matching procedure in two
dimensions, it is finally possible to recast the equations
for the dynamics of the spin fluctuation variables in the
step domain by using equations (6), (14), (15) and (16).
This leads to the matrix form described as:

[
E2I −MS(υ, θ, {ψζ})

] |V 〉 = |0〉 , (17)

where |V 〉 = [α+
−∞<n≤−1,s,−1, β

+
−∞<n≤−1,s,−1, α

+
n≤0,s,0,

β+
n≤0,s,0, α

+
n,s,1, β

+
n,s,1, α

+
n,s,2, β

+
n,s,2, Rrζ , Rlζ ]T . I is the

unit matrix and MS(ϑ, θ, {ψζ}) with ϑ, θ = φ(E, ε‖1(2),

ε⊥c , ε⊥‖ , γσκ(‖,⊥)
k (k‖, ψξ), C(A(B), ψξ), Ha

A,B) denotes the
square (10 × 10) mean dynamical matrix which describes
the localized spin waves on the surface step layers and {ψ}
is a set of ζ = 1, 2, . . . , (ne + nb) roots of the ψ-secular
equation (8), in the (E, k‖) space. To obtain non triv-
ial solutions for the spin fluctuation variables α+

n,s,m and
β+

n′,s′,m′ , the determinant system given by equation (17)
must vanish, which defines an algebraic equation in E,
whose real and positive solutions ES(k‖) yield the mean
surface step spin wave branches in the nb zones, and the
surface step resonances in the regions where nb �= 0.
The non-vanishing matrix elements MS are given in the
appendix.

5 Numerical results and discussions

Salient numerical examples are presented to demonstrate
the essential features of the surface and step spin-wave
modes and the influence of bulk-surface and bulk-step ex-
change parameters on the localized spin modes. It is im-
portant to note that in the present calculations, due to
the lack of experimental data, we neglect in our numerical
results both bulk and surface anisotropy fields as well as
the applied magnetic field. Their eventual inclusion into
the model poses no difficulty at all from a mathemati-
cal point of view. Furthermore, let us quote that for any
thorough surface study, we must include surface relaxation
or reconstruction effects which can influence the exchange
constants. It is quite possible that other kinds of magnetic
interactions also play a role in the behavior and frequen-
cies of the spin waves localized on the surface and step in
which case these interactions should be considered in the
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spin fluctuation field calculations. Consequently, we could
also consider variations in the exchange constants from
side to side and the step-step interactions, but we will not
explore this further in this work considering the degree of
complexity of problem examined here. Consequently, only
the case where ε⊥c = 1 and ε‖1 = ε

‖
2 = ε

‖
s = ε⊥1‖ = ε⊥2‖ = ε⊥s‖

is investigated.
The set of propagating spin-wave modes energies local-

ized in the bulk domain are obtained after inserting equa-
tions (7a) and (7b) in equation (6) and using equation (8)
with the conditions |ψ±n,s,m| = 1 and |ψn,s,±m| = 1. The
only region where the latter conditions are verified corre-
sponds effectively to the propagating modes for the bulk
region referred to as the bulk continuum in the figures.
The surface step fluctuation field amplitude decays ex-
ponentially with increasing penetration into the insulat-
ing antiferromagnetic layer. The numerical calculations,
in the form of points E versus kya, gives the dispersion
curves for a model of magnetic exchange interactions for
that purpose.

The satisfying condition det (Ms) = 0 in equation (17)
leads to a non linear expression in E and k‖a. The numer-
ical solution gives the dispersion curves which depict the
surface and step spin mode energies. These curves depict
magnons propagating along the direction normal to the
surface steps that are however effectively localized in the
sense that their spin fluctuation field is evanescent in the
plane normal to the step terrace. The amplitude of the lo-
calized spin-waves decreases as one goes from one site to
another further and further away from the step into the
bulk domain.

When the surface exchange interactions (J‖
S) differ

from those in the bulk (J), the behavior of the sur-
face magnetization with changing roughness is much more
complex and interesting. J‖

S may be larger or smaller
than J . The reduced atomic coordination at a surface pro-
duces a narrower band width and hence a larger magnetic
moment [26,27], favoring J

‖
S > J . On the other hand,

the surface lattice spacing can be larger than the bulk
lattice spacing, leading to a weaker spin-spin interaction
and favoring J

‖
S < J . We therefore consider both pos-

sibilities. Consequently, the spin-wave dispersion curves
for bulk, surface and step layers are shown in Figure 2,
considering the propagating and evanescent modes along
the wave-vector ky. Let us mention that in Figures 2a
and 2b, the case where the exchange parameters for both
surface and step layers are weaker than in the bulk domain
is considered, whereas in Figures 2c and 2e the opposite
case is assumed. Figure 2d depicts the free stepped surface
configuration.

Let us consider, firstly, the weak bulk-stepped surface
coupling exchange (ε‖1 = 0.5) as illustrated in Figure 2a.
Three acoustic branches will be truncated at some value
of ky = kc (given by, kc1 = 0.44, kc2 = 0.52, kc3 = 0.87)
corresponding to EB(kc) = Es(kc). One optic mode (O1)
occurs tangentially with the bulk continuum with energy
range 662 K ≤ Es ≤ 706 K. All branches are doubly de-
generate. Two localized modes (A1 and A2) correspond

to those occurring along the two steps edges, whereas the
third (A3) characterizes the surface terrace mode. When
a weak bulk-stepped surface coupling exchange (ε‖1 = 0.8)
is considered as illustrated in Figure 2b, the two trun-
cated acoustic modes (A1 and A2) occur with energies
ESA1(ky) = EsA2(ky) and the energy value for the third
acoustic mode remains constant with ESA3(ky) ≈ 355 K.

For the “free stepped surface” case (ε‖1 = 1), the sur-
face spin-wave modes are seen to split into two branches
for small enough wave vectors and they become approxi-
mately degenerate at larger wave vectors. Since the split-
ting of the acoustic spin-wave surface branches is most
apparent for small wave vectors in the case of the free
stepped surface, these surface effects in films can in prin-
ciple be studied experimentally by light scattering tech-
niques. Furthermore, the two acoustic modes localized on
the two steps are practically superposed and occur in the
energy range 215 K ≤ ES ≤ 222 K as illustrated in Fig-
ure 2c.

The strong bulk-stepped surface coupling exchange
with values ε‖1 = 1.4 and ε

‖
1 = 1.8 gives the presence

of optical modes. These illustrations are given in Fig-
ures 2d and 2e, respectively. No acoustic wave branches
exist for ε‖1 ≥ 1. In Figure 2d, four modes appear, all oc-
curring above the bulk spin-wave region so-called “optical
modes”. Hence, there is an energy range, approximately
188 K ≤ ES ≤ 319 K for which there are localized inter-
face modes as well as surface and step modes. Two modes
(O2, O3) will be truncated at some value of ky = k′c (given
by k′c2 = 1.7 and k′c3 ≈ 0.9). One complete mode (O4) oc-
curs at the origin of the first Brillouin zone and becomes
the magnetic cell with Es(ky → 0) ≈ 242 K. Figure 2e
displays the surface and step spin wave modes. Again the
shaded area corresponds to the region occupied by the
bulk modes. Figure 2e is presented emphasizing the dis-
tribution of the frequencies of the localized modes and
the effects of changes in the surface-step-bulk exchange
parameters on the surface-step spin-wave branches that
can occur. For sufficiently small values of ε‖1, the assumed
antiferromagnetic ground state can become unstable, cor-
responding to a reorientation of spins near the surfaces.
This is analogous to the type of surface reorientation phase
transition discussed by Mills [28] in certain anisotropic fer-
romagnets.

6 Conclusions

The matching procedure is used in this work to cal-
culate the spin-wave modes localized on a surface step
for an insulating antiferromagnet model. We emphasize
that the present model is simple insofar that it considers
only magnetic exchange interactions between the ordered
spins, yielding the exchange-dominated step localized
spin-waves. Following the analytical procedure developed
in this paper, it is possible to introduce other forms of
magnetic interactions in the present model in a relatively
direct manner.
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Fig. 2. Numerical solutions for the dispersion relations for
bulk and step spin modes for several typical choices of the
model parameters. The plot is given against kya. The region
containing the bulk modes is shown shaded, whereas the set of

curves (dotted lines) represent the step modes. (a) ε
‖
1 = 0.5.

(b) ε
‖
1 = 0.8. (c) Free stepped surface model (ε

‖
1 = 1). (d) ε

‖
1 =

1.2. (e) ε
‖
1 = 1.8.
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The formalism presented here is an analytical approach
which is independent of the geometry of the nanostructure
in the surface. This makes it easy to extend to a variety of
real problems. It can also give in a direct manner the spin
fluctuation field on the surface step layer with the help
of finite matrices. The theoretical formalism described for
the present case can readily be generalized to other surface
step problems concerning in particular the imperfect an-
tiferromagnets films such as NiO or the perovskite struc-
ture KNiF3. In both of these materials the magnetic Ni
ions lie on a simple cubic lattice, and the exchange inter-
actions are very strong making the use of Heisenberg type
Hamiltonian appropriate.

To our knowledge little if any attention has been as-
signed to the study of magnetic excitations localized in the
neighborhood of a surface step system. From the experi-
mental point of view, we note that the lack of experimental
data which are available at present to compare our results
with. However, there is experimental evidence that shows
the existence of step changes in the thin metastable epitax-
ial Fe films on Cu (100) [9] (these imperfections may lead
to a number of effects including changes in the thermal
properties of the film and short lifetimes for spin-waves
as evidenced by the large linewidths in Brillouin scatter-
ing experiments), and the localized phonons on the step
of a vicinal Ni surface [29]. With the recent theoretical
work concerning these step localized phonons [30], this
provides a realistic feel for such localized magnetic excita-
tions. The phonon model, as well as the spin-wave model
for that purpose, share a common theoretical approach in
the harmonic approximation.

On the other hand, the frequencies of these localized
modes may provide information concerning the local mag-
netic anisotropy and exchange interactions in the neigh-
borhood of such a surface reconstruction and/or relaxed
layers, and will contribute to understand more fully the
role that surface phenomena may play such as surface
steps instability, the growth of a magnetic substrate and
surface optical properties. A straightforward generaliza-
tion of the present calculations would be to other magnetic
structures. This would allow applications to metallic films
such as epitaxial fcc Fe (100) on Cu (100) films (10−17
monolayer thick) which is paramagnetic at room tempera-
ture and antiferromagnetic at low temperature [31], using
Brillouin light scattering. These films have intriguing mag-
netic properties, making them suitable for surface recon-
struction dynamics studies. Another application of these
calculations may be illustrated on the monolayer Fe films
grown on a stepped W (110) surface. This system consti-
tutes the only one in which growth starts with a stable Fe
monolayer being formed, pseudomorphic with the W sub-
strate. This growth mode has been observed on stepped
W surfaces using scanning tunneling microscopy, where it
is was seen that at 600 K the Fe films grow first along
the steps, spreading across the ledges as they continue to
grow [32].

It should be emphasized that the results we have found
here show how sensitive the magnetic structure of a solid
surface is to its atomic structure and geometry. We have

to remark that our conclusions are based on a Heisen-
berg Hamiltonian model, with exchange reduced to near-
est neighbors only, and with no inclusion of any recon-
struction, pinning, step fluctuations, step-step interactions
or magnetic anisotropy [33–35]. Our calculation is also re-
stricted to a well defined model surface and to a reasonable
sampling of the Brillouin zone. We believe, however, that
we have uncovered some important points and that we
have determined qualitatively the salient features of the
spin-wave spectrum of stepped magnetic surfaces. Finally,
the analytic procedure developed here for calculating the
energies and intensities of the bulk and localized spin wave
modes in the vicinity of two steps can be applied to other
low dimensional structures and we intend to report on
that elsewhere. Brillouin light scattering would provide a
suitable probe of these effects.

The author is very indebted to Dr J.M. Greneche and Dr L.
Berger (UMR CNRS 6087- Université du Maine (France)) for
their hospitality, encouragement and stimulating discussions
and acknowledges a very useful correspondence with the refer-
ees, and their remarks.

Appendix

The non vanishing (10 × 10) square matrix elements
Ms(k, l) = f(E, J‖

S1(S2), J‖S, J
⊥
c , J⊥, J, C(A(B), ψξ)) are

given in the following forms:

Ms(1, 1) = E + (3J‖
S1 + J⊥

c )SB + µAH
a
A,

Ms(1, 2) = Ms(3, 4) = −3J‖
S1(1 − cos kya)SA,

Ms(1, 4) = −J⊥
c SA,

Ms(2, 1) = Ms(4, 3) = −3J‖
S1(1 − cos kya)SB,

Ms(2, 2) = E + (3J‖
1 + J⊥

c )SA + µBH
a
B,

Ms(2, 3) = Ms(4, 5) = −J⊥
c SB,

Ms(3, 3) = E + (3J‖
S1 + J⊥

c )SB + µAH
a
A,

Ms(3, 6) = J⊥
c SA,

Ms(4, 4) = E + (3J‖
1 + J⊥

c )SA + µBH
a
B,

Ms(5, 4) = Ms(5, 8) = Ms(7, 6) = −J⊥SA,

Ms(5, 5) = E + (4J‖
S2 + J⊥

c + J⊥)SB + µAH
a
A,

Ms(5, 6) = −4J‖
S2(1 − cos kya)SA,

Ms(6, 3) = Ms(6, 7) = Ms(8, 5) = −J⊥SB,

Ms(6, 5) = −4J‖
S2(1 − cos kya)SB,

Ms(6, 6) = E + (4J‖
S2 + J⊥

c + J⊥)SA + µBH
a
B ,
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Ms(7, 7) = E + (5J + J⊥)SB + µAH
a
A,

Ms(7, 8) = −3JSA,

Ms(7, 9) = −JSAC(B,ψ1),

Ms(7, 10) = −JSAC(B,ψ2),

Ms(8, 7) = −3JSB,

Ms(8, 8) = E + (5J + J⊥)SA + µBH
a
B

Ms(8, 9) = −JSAC(A,ψ1),

Ms(8, 10) = −JSAC(A,ψ2),

Ms(9, 8) = −JSA,

Ms(9, 9) = (E + 6JSB + µAH
a
A)C(A,ψ1)

− 4JSA(1 − cos kya)C(B,ψ1)

− JSAC(B,ψ1)ψ1,

Ms(9, 10) = (E + 6JSB + µAH
a
A)C(A,ψ2)

− 4JSA(1 − cos kya)C(B,ψ2)

− JSAC(B,ψ2)ψ2,

Ms(10, 7) = −JSB,

Ms(10, 9) = (E + 6JSA + µAH
a
B)C(B,ψ1)

− 4JSB(1 − cos kya)C(A,ψ1)

− JSBC(A,ψ1)ψ1,

Ms(10, 10) = (E + 6JSA + µAH
a
B)C(B,ψ2)

− 4JSB(1 − cos kya)C(A,ψ2)

− JSBC(A,ψ2)ψ2.
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